
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL
Prof. Hiren Patel, Ph.D., P.Eng.
Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.
Some rights reserved.

Non-binary partitions

2
Non-binary partitions

Outline

• In this lesson, we will:
– Discuss our previous implementation of partitioning an array

• That was a binary partition
– Describe having multiple partitions

• We will divide the entries into decades
– Look at:

• A simple and straight-forward implementation
• A better implementation that doesn’t require a second array
• A faster implementation that requires a second array
• An even faster implementation that requires only an array of size ten

– Discuss how design decisions and choice of algorithms can lead to
sometimes busier code, but also faster code

3
Non-binary partitions

Non-binary partitions

• We have seen algorithms for partitioning entries of an array so that
all entries satisfying a condition come first, and all entries that do
not come second, or vice versa
– This is a binary partition: only two possibilities

• Suppose there multiple partitions:
– For example, given n numbers in the range [0, 100),

partition the numbers so:
• Those in [0, 10) come first,
• Those in [10, 20) come next,

and so on until those in [90, 100) come last
– Recall that [a, b) includes all numbers x such that a ≤ x < b

4
Non-binary partitions

Non-binary partitions

• Here is the function prototype:
void decade_partition(double array[],

std::size_t bounds[11],
std::size_t capacity);

• The behavior of the function is as follows:
– The array that is passed will be partitioned in place
– The bounds array will contain indices so that we can iterate through

all entries falling between [10k, 10(k + 1)) with

for (std::size_t i{ bounds[k] }; i < bounds[k + 1]; ++i) {
std::cout << array[i] << " ";

}

5
Non-binary partitions

Initial approach

• Consider the following approach:
– Loop through the array and find all entries on [0, 10) and copy them

into a new array, recording how many there were
– Loop again, but now do the same with entries on [10, 20)
– Repeat this until all decades have been partitioned

• We will need a new array containing as many entries as the original
– A local variable will store the next location to place a value

• Our outer loop will iterate from 0 to 9:
– On the ith iteration, it will find all numbers x such that

10 i ≤ x < 10 (i + 1)

6
Non-binary partitions

Initial approach
void decade_partition(double array[],

std::size_t bounds[11],
std::size_t capacity) {

double partition[capacity];
std::size_t next_index{ 0 };

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
bounds[idx] = next_index;

for (std::size_t k{ 0 }; k < capacity; ++k) {
if ((10.0*idx <= array[k]) && (array[k] < 10.0*(idx + 1))) {

partition[next_index] = array[k];
++next_index;

}
}

}

assert(next_index == capacity);
bounds[10] = capacity;

7
Non-binary partitions

Initial approach

// Copy all the entries back to the original array

for (std::size_t k{ 0 }; k < capacity; ++k) {
array[k] = partition[k];

}
}

8
Non-binary partitions

Using only one array?

• Question: Can you do this without a second array?
– Suppose that we are checking if array[k] should be moved back to

position array[next_index]
– In this case, whatever is at array[next_index] is not in the correct

location
– How about just swapping them?
– We could use:

double tmp{ array[k] };
array[k] = array[next_index];
array[next_index] = tmp;

– We will use std::swap(…)

9
Non-binary partitions

Using only one array?
void decade_partition(double array[],

std::size_t bounds[10],
std::size_t capacity) {

std::size_t next_index{ 0 };

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
bounds[idx] = next_index;

for (std::size_t k{ 0 }; k < capacity; ++k) {
if ((10.0*idx <= array[k]) && (array[k] < 10.0*(idx + 1))) {

std::swap(array[next_index], array[k]);
++next_index;

}
}

}

assert(next_index == capacity);
bounds[10] = capacity;

}

10
Non-binary partitions

Reducing the number of checks?

• Notice that, after the first loop,
the entries 0 through next_index - 1 are all their correct

location
– There is no point in checking these again!

• Thus, we really only need start the loop at next_index, not 0:
for (std::size_t idx{ 0 }; idx < 10; ++idx) {

bounds[idx] = next_index;

for (std::size_t k{ next_index }; k < capacity; ++k) {
if ((10.0*idx <= array[k]) && (array[k] < 10.0*(idx + 1))) {

std::swap(array[next_index], array[k]);
++next_index;

}
}

}

11
Non-binary partitions

Reducing the number of checks?

• How does this help us?
– Suppose we are partitioning an array with capacity n
– If all the entries are in the first partition, we will only check n entries
– If all the entries are in the last partition, we will check 10n entries
– Suppose that each partition has approximation 10% of the entries

• The first time, we will check n
• Next, 10% are partitioned, so we will check only 90% or 0.9n
• Next, 20% are partitioned, so we will only check 80%, and so on…

– Thus, we will check:
n + 0.9n + 0.8n + 0.7n + 0.6n + 0.5n + 0.4n + 0.3n + 0.2n + 0.1n

= (1 + 0.9 + 0.8 + 0.7 + 0.6 + 0.5 + 0.4 + 0.3 + 0.2 + 0.1)n
= 5.5n

– This is about 50% of the worst-case scenario,
but engineers must worry about the worst case

12
Non-binary partitions

Issues with this approach

• How expensive is this algorithm?
– We must loop through the array up to ten times

• Suppose we wanted to partition such numbers,
but on percentiles: [0, 1), [1, 2), [2, 3), …, [98, 99), [99, 100)?
– We would need to loop through the array up to one hundred times…

• This could get very expensive, very fast…
• Can we do this without a loop inside a loop?

– Hint: We will use the bounds array

13
Non-binary partitions

Issues with this approach

• Pause this video, and try this on your own
– Hint: Start by counting how many items fall into each partition
– From this, can you get entries of the bounds array?
– Can you use the bounds array to build up a partition?

• Try this with

– Remember, the first two entries can be 0.2 0.3, or 0.3 0.2
• Order does not matter within a partition

7.5 2.3 4.6 5.7 0.3 2.9 2.2 9.9 7.3 4.4 0.2 4.8 8.8 9.8 3.8 1.7

0 1 2 3 4 5 6 7 8 9 10

0 2 3 6 7 10 11 11 13 14 16

14
Non-binary partitions

1. Counting the entries in the partitions

• First, count the number of entries that fall into each of the partitions
// Set all entries to 0
for (std::size_t idx{ 0 }; idx <= 10; ++idx) {

bounds[idx] = 0;
}

// Determine which partition an entry falls in and
// then increment the count for that partition
for (std::size_t k{ 0 }; k < capacity; ++k) {

std::size_t idx{ std::floor(array[k]/10.0) };
++bounds[idx];

}

15
Non-binary partitions

2. Calculate a running sum

• With 25 items, given that the bounds array is now:
{ 3, 1, 2, 3, 2, 0, 5, 2, 3, 4, 0}

We must convert this to:
{ 0, 3, 4, 6, 9, 11, 11, 16, 18, 21, 25}

– Pause and try to do this on your own

std::size_t running_sum{ 0 };

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
running_sum += bounds[idx];
bounds[idx] = running_sum - bounds[idx];

}

assert(running_sum == capacity);
bounds[10] = capacity;

16
Non-binary partitions

2. Calculate a running sum

• With 25 items, given that the bounds array is now:
{ 3, 1, 2, 3, 2, 0, 5, 2, 3, 4, 0}

We must convert this to:
{ 0, 3, 4, 6, 9, 11, 11, 16, 18, 21, 25}

– Sometimes, however, there are clearer implementations

bounds[10] = capacity;

for (std::size_t idx{ 9 }; idx > 0; --idx) {
bounds[idx] = bounds[idx + 1] - bounds[idx];

}

assert(bounds[0] == bounds[1]);
bounds[0] = 0;

17
Non-binary partitions

3. Placing items into the correct location

• Consider the array
{ 0, 3, 4, 6, 9, 11, 11, 16, 18, 21, 25}

– This says:
• Items in the first decade belong in array[0], …, array[2]
• The sixth decade is empty
• Items in the seventh decade belong in array[11], …, array[15]

– Thus, the first item we find in the 7th decade belongs at
bounds[6]

– The second in the 7th decade belongs at
bounds[6] + 1

• Place an item into bounds[idx] and increment that value

18
Non-binary partitions

3. Placing items into the correct location

• Thus, we have:
// Copy into a new array of the appropriate size
double partition[capacity];

for (std::size_t k{ 0 }; k < capacity; ++k) {
std::size_t idx{ std::floor(array[k]/10.0) };
partition[bounds[idx]] = array[k];
++bounds[idx];

}

assert(bounds[9] == capacity);

19
Non-binary partitions

4. Clean up…

• First, we have to copy the entries back to the original array:
for (std::size_t k{ 0 }; k < capacity; ++k) {

array[k] = partition[k];
}

• Next, the bounds array now looks like:
{ 3, 4, 6, 9, 11, 11, 16, 18, 21, 25, 25}

– We must shift these entries back
for (std::size_t idx{ 9 }; idx > 0; --idx) {

bounds[idx] = bounds[idx - 1];
}

bounds[0] = 0;

20
Non-binary partitions

Our two approaches

• Compare these two functions:

void decade_partition(double array[],
std::size_t bounds[11],
std::size_t capacity) {

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
bounds[idx] = 0;

}

for (std::size_t k{ 0 }; k < capacity; ++k) {
std::size_t idx{ std::floor(array[k]/10.0) };
++bounds[idx];

}

bounds[10] = capacity;

for (std::size_t idx{ 9 }; idx > 0; --idx) {
bounds[idx] = bounds[idx + 1] - bounds[idx];

}

bounds[0] = 0;

double partition[capacity];

for (std::size_t k{ 0 }; k < capacity; ++k) {
std::size_t idx{ std::floor(array[k]/10.0) };
partition[bounds[idx]] = array[k];
++bounds[idx];

}

for (std::size_t k{ 0 }; k < capacity; ++k) {
array[k] = partition[k];

}

for (std::size_t idx{ 9 }; idx > 0; --idx) {
bounds[idx] = bounds[idx - 1];

}

bounds[0] = 0;
}

void decade_partition(double array[],
std::size_t bounds[10],
std::size_t capacity) {

std::size_t next_index{ 0 };
double partition[capacity];

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
bounds[idx] = next_index;

for (std::size_t k{ next_index }; k < capacity; ++k) {
if ((10.0*idx <= array[k]) && (array[k] < 10.0*(idx + 1))) {

std::swap(partition[next_index], array[k]);
++next_index;

}
}

}
}

21
Non-binary partitions

Our two approaches

• Why implement a function that is significantly:
– Longer, and
– More complex?

• Consider the total number of iterations to partition 10 000 numbers
– We will count the number of executions of a loop body:

• The first requires 10 loops of 10 0000, so 100 000 executions
• The second requires 3 × 10 + 3 × 10 000 = 30 030 executions

– Suppose we were partitioning n numbers into m partitions:
• The first requires mn executions
• The second requires m + n + m + n + n + m = 3(m + n) executions

– If n = 100 000 and m = 100 partitions:
• The first requires 10 000 000 executions
• The second requires 300 300 executions or about 3%

22
Non-binary partitions

Our two approaches

• Is the second approach really more complex?
– Not really, as each individual step is easy and straight-forward

• The real problem with such a multi-step approach is if there is a
single bug in any of the one algorithms,

it may be difficult to isolate exactly where the bug is
– Solution?

• Start with a small array where you know what the solution is
• Work out all the results by hand
• Make sure the program has the same values

23
Non-binary partitions

Our two approaches

• For example,
{?, ?, ?, ?, ?, ?, ?, ?, ?, ?}
{56.0, 76.0, 3.5, 86.8, 86.7, 96.7, 100.0, 55.6, 36.4, 98.8}

– Initialize the bounds array:
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

– Count the items in each decade:
{1, 0, 0, 1, 0, 2, 0, 1, 2, 3, 0}

– Calculate the running sum:
{0, 1, 1, 1, 2, 2, 4, 4, 5, 7, 10}

– Place items in the correct location:
{3.5, 36.4, 56.0, 55.6, 76.0, 86.8, 86.7, 96.7, 100.0, 98.8}

– The running sum should now look like:
{1, 1, 1, 2, 2, 4, 4, 5, 7, 10, 10}
• Revert it back and we’re done

24
Non-binary partitions

Another approach?

• Our algorithm now requires:
– An additional array with capacity entries
– Three passes through the array:

• To count, to partition, and to copy back

• Can we do better?
– We’ll step through another approach that requires:

• An additional array of capacity 10
• Only two passes through the array of entries to be partitioned

25
Non-binary partitions

Another approach?

• Let’s make a copy of most of the bounds[11] array:
– Call it next_index[10]

• We will use next_index[k] to determine where to place the next
entry that appears in the kth decade
– If next_index[k] != bounds[k + 1],

the item at that location has not yet been moved to its
correct partition
• Determine where that entry should be (call it idx) and then swap
next_index[k] and next_index[idx],
then increment next_index[idx]

– Continue until next_index[k] == bounds[k + 1] for all k

26
Non-binary partitions

Final approach

void decade_partition(double array[],
std::size_t bounds[11],
std::size_t capacity) {

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
bounds[idx] = 0;

}

for (std::size_t k{ 0 }; k < capacity; ++k) {
std::size_t idx{ std::round(

array[k]/10.0
) };

++bounds[idx];
}

bounds[10] = capacity;

for (std::size_t idx{ 9 }; idx > 0; --idx) {
bounds[idx] = bounds[idx + 1] - bounds[idx];

}

bounds[0] = 0;

// Copy the 'bounds' array
std::size_t next_index[10];

for (std::size_t idx{ 0 }; idx < 10; ++idx) {
next_index[idx] = bounds[idx];

}

// Keep going until all partitions are full
for (std::size_t k{ 0 }; k < 10; ++k) {

while (next_index[k] != bounds[k + 1]) {
std::size_t idx{ std::round(

array[next_index[k]]/10.0
) };

std::swap(
array[next_index[k]],
array[next_index[idx]]

);

++next_index[idx];
}

}
}

27
Non-binary partitions

Generalization

• We hard-coded the partitioning algorithm into our routine
– Can we do better?

void decade_partition(
double array[],
std::size_t capacity,
std::size_t bounds[],
std::size_t num_partitions,
std::function<std::size_t(double)> to_index);

– The to_index(…) function takes a double and returns a partition
number between 0 and num_partitions - 1

28
Non-binary partitions

Summary

• Following this lesson, you now
– Described non-binary partitioning
– Observed that the most obvious solution is not always the best
– Seen how there are many different implementations for different

algorithms, sometimes even within another algorithm
– Seen that a more efficient algorithm may not always be more

complex
• The first and second approaches were similar

– The second did not require a second array
• The third approach was better than the second, but much longer
• The last approach was better than the third, and more sussinct

29
Non-binary partitions

References

[1] https://en.wikipedia.org/wiki/Partition_of_a_set

30
Non-binary partitions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

31
Non-binary partitions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

	Non-binary partitions
	Outline
	Non-binary partitions
	Non-binary partitions
	Initial approach
	Initial approach
	Initial approach
	Using only one array?
	Using only one array?
	Reducing the number of checks?
	Reducing the number of checks?
	Issues with this approach
	Issues with this approach
	1. Counting the entries in the partitions
	2. Calculate a running sum
	2. Calculate a running sum
	3. Placing items into the correct location
	3. Placing items into the correct location
	4. Clean up…
	Our two approaches
	Our two approaches
	Our two approaches
	Our two approaches
	Another approach?
	Another approach?
	Final approach
	Generalization
	Summary
	References
	Colophon
	Disclaimer

